Blog

  • Bus

    bus  is a motor vehicle that carries significantly more passengers than an average car or van, but fewer than the average rail transport. It is most commonly used in public transport, but is also in use for charter purposes, or through private ownership. Although the average bus carries between 30 and 100 passengers, some buses have a capacity of up to 300 passengers.[2] The most common type is the single-deck rigid bus, with double-decker and articulated buses carrying larger loads, and midibuses and minibuses carrying smaller loads. Coaches are used for longer-distance services. Many types of buses, such as city transit buses and inter-city coaches, charge a fare. Other types, such as elementary or secondary school buses or shuttle buses within a post-secondary education campus, are free. In many jurisdictions, bus drivers require a special large vehicle licence above and beyond a regular driving license.

    Buses may be used for scheduled bus transportscheduled coach transportschool transport, private hire, or tourism; promotional buses may be used for political campaigns and others are privately operated for a wide range of purposes, including rock and pop band tour vehicles.

    Horse-drawn buses were used from the 1820s, followed by steam buses in the 1830s, and electric trolleybuses in 1882. The first internal combustion engine buses, or motor buses, were used in 1895.[3] Recently, interest has been growing in hybrid electric busesfuel cell buses, and electric buses, as well as buses powered by compressed natural gas or biodiesel. As of the 2010s, bus manufacturing is increasingly globalised, with the same designs appearing around the world.

    Name

    An early horse-drawn omnibus from mid-nineteenth century

    The word bus is a shortened form of the Latin adjectival form omnibus (“for all”), the dative plural of omnis/omne (“all”).[4] The theoretical full name is in French voiture omnibus[1] (“vehicle for all”). The name originates from a mass-transport service started in 1823 by a French corn-mill owner named Stanislas Baudry [fr] in Richebourg, a suburb of Nantes. A by-product of his mill was hot water, and thus next to it he established a spa business. In order to encourage customers he started a horse-drawn transport service from the city centre of Nantes to his establishment. The first vehicles stopped in front of the shop of a hatter named Omnés, which displayed a large sign inscribed “Omnes Omnibus”, a pun on his Latin-sounding surname, omnes being the male and female nominative, vocative and accusative form of the Latin adjective omnis/-e (“all”),[4] combined with omnibus, the dative plural form meaning “for all”, thus giving his shop the name “Omnés for all”, or “everything for everyone”.

    His transport scheme was a huge success, although not as he had intended as most of his passengers did not visit his spa. He turned the transport service into his principal lucrative business venture and closed the mill and spa.[5] Nantes citizens soon gave the nickname “omnibus” to the vehicle.[1] Having invented the successful concept Baudry moved to Paris and launched the first omnibus service there in April 1828.[1] A similar service was introduced in Manchester in 1824 and in London in 1829.[6][7][8]

    History

    Steam buses

    Main article: Steam bus

    Amédée Bollée‘s L’Obéissante (1875)

    Regular intercity bus services by steam-powered buses were pioneered in England in the 1830s by Walter Hancock and by associates of Sir Goldsworthy Gurney, among others, running reliable services over road conditions which were too hazardous for horse-drawn transportation.

    The first mechanically propelled omnibus appeared on the streets of London on 22 April 1833.[9] Steam carriages were much less likely to overturn, they travelled faster than horse-drawn carriages, they were much cheaper to run, and caused much less damage to the road surface due to their wide tyres.[10]

    However, the heavy road tolls imposed by the turnpike trusts discouraged steam road vehicles and left the way clear for the horse bus companies, and from 1861 onwards, harsh legislation virtually eliminated mechanically propelled vehicles from the roads of Great Britain for 30 years, the Locomotive Act 1861 imposing restrictive speed limits on “road locomotives” of 5 mph (8.0 km/h) in towns and cities, and 10 mph (16 km/h) in the country.[11]

    Trolleybuses

    Main article: Trolleybus

    World’s first trolleybus, Berlin 1882

    In parallel to the development of the bus was the invention of the electric trolleybus, typically fed through trolley poles by overhead wires. The Siemens brothers, William in England and Ernst Werner in Germany, collaborated on the development of the trolleybus concept. Sir William first proposed the idea in an article to the Journal of the Society of Arts in 1881 as an “…arrangement by which an ordinary omnibus…would have a suspender thrown at intervals from one side of the street to the other, and two wires hanging from these suspenders; allowing contact rollers to run on these two wires, the current could be conveyed to the tram-car, and back again to the dynamo machine at the station, without the necessity of running upon rails at all.”[12]

    The first such vehicle, the Electromote, was made by his brother Ernst Werner von Siemens and presented to the public in 1882 in HalenseeGermany.[13] Although this experimental vehicle fulfilled all the technical criteria of a typical trolleybus, it was dismantled in the same year after the demonstration.[14]

    Max Schiemann opened a passenger-carrying trolleybus in 1901 near Dresden, in Germany. Although this system operated only until 1904, Schiemann had developed what is now the standard trolleybus current collection system. In the early days, a few other methods of current collection were used. Leeds and Bradford became the first cities to put trolleybuses into service in Great Britain on 20 June 1911.

    Motor buses

    In Siegerland, Germany, two passenger bus lines ran briefly, but unprofitably, in 1895 using a six-passenger motor carriage developed from the 1893 Benz Viktoria.[3] Another commercial bus line using the same model Benz omnibuses ran for a short time in 1898 in the rural area around Llandudno, Wales.[15]

    Germany’s Daimler Motors Corporation also produced one of the earliest motor-bus models in 1898, selling a double-decker bus to the Motor Traction Company which was first used on the streets of London on 23 April 1898.[16] The vehicle had a maximum speed of 18 km/h (11.2 mph) and accommodated up to 20 passengers, in an enclosed area below and on an open-air platform above. With the success and popularity of this bus, DMG expanded production, selling more buses to companies in London and, in 1899, to Stockholm and Speyer.[16] Daimler Motors Corporation also entered into a partnership with the British company Milnes and developed a new double-decker in 1902 that became the market standard.

    The first mass-produced bus model was the B-type double-decker bus, designed by Frank Searle and operated by the London General Omnibus Company—it entered service in 1910, and almost 3,000 had been built by the end of the decade. Hundreds of them saw military service on the Western Front during the First World War.[17]

    The Yellow Coach Manufacturing Company, which rapidly became a major manufacturer of buses in the US, was founded in Chicago in 1923 by John D. HertzGeneral Motors purchased a majority stake in 1925 and changed its name to the Yellow Truck and Coach Manufacturing Company. GM purchased the balance of the shares in 1943 to form the GM Truck and Coach Division.

    Models expanded in the 20th century, leading to the widespread introduction of the contemporary recognizable form of full-sized buses from the 1950s. The AEC Routemaster, developed in the 1950s, was a pioneering design and remains an icon of London to this day.[18] The innovative design used lightweight aluminium and techniques developed in aircraft production during World War II.[19] As well as a novel weight-saving integral design, it also introduced for the first time on a bus independent front suspensionpower steering, a fully automatic gearbox, and power-hydraulic braking.[20]

    • The first ever internal combustion omnibus, introduced in 1895 (Siegen to Netphen)
    • A 1911 LGOC B-type
    • A 1912 Daimler CC Bus, one of five (English) Daimler Company buses exported to Australia

    Types

    Interior of an articulated bus in Los Angeles

    Formats include single-decker bus, double-decker bus (both usually with a rigid chassis) and articulated bus (or ‘bendy-bus’) the prevalence of which varies from country to country. High-capacity bi-articulated buses are also manufactured, and passenger-carrying trailers—either towed behind a rigid bus (a bus trailer) or hauled as a trailer by a truck (a trailer bus). Smaller midibuses have a lower capacity and open-top buses are typically used for leisure purposes. In many new fleets, particularly in local transit systems, a shift to low-floor buses is occurring, primarily for easier accessibility. Coaches are designed for longer-distance travel and are typically fitted with individual high-backed reclining seats, seat belts, toilets, and audio-visual entertainment systems, and can operate at higher speeds with more capacity for luggage. Coaches may be single- or double-deckers, articulated, and often include a separate luggage compartment under the passenger floor. Guided buses are fitted with technology to allow them to run in designated guideways, allowing the controlled alignment at bus stops and less space taken up by guided lanes than conventional roads or bus lanes.

    Bus manufacturing may be by a single company (an integral manufacturer), or by one manufacturer’s building a bus body over a chassis produced by another manufacturer.

    Design

    Accessibility

    Portland, Oregon TriMet high-floor bus with wheelchair ramp extended (2010)

    Transit buses used to be mainly high-floor vehicles. However, they are now increasingly of low-floor design and optionally also ‘kneel’ air suspension and have ramps to provide access for wheelchair users and people with baby carriages, sometimes as electrically or hydraulically extended under-floor constructs for level access. Prior to more general use of such technology, these wheelchair users could only use specialist para-transit mobility buses.

    Accessible vehicles also have wider entrances and interior gangways and space for wheelchairs. Interior fittings and destination displays may also be designed to be usable by the visually impaired. Coaches generally use wheelchair lifts instead of low-floor designs. In some countries, vehicles are required to have these features by disability discrimination laws.

    Configuration

    Buses were initially configured with an engine in the front and an entrance at the rear. With the transition to one-man operation, many manufacturers moved to mid- or rear-engined designs, with a single door at the front or multiple doors. The move to the low-floor design has all but eliminated the mid-engined design, although some coaches still have mid-mounted engines. Front-engined buses still persist for niche markets such as American school buses, some minibuses, and buses in less developed countries, which may be derived from truck chassis, rather than purpose-built bus designs. Most buses have two axles, while articulated buses have three.[citation needed]

    Guidance

    Guided buses are fitted with technology to allow them to run in designated guideways, allowing the controlled alignment at bus stops and less space taken up by guided lanes than conventional roads or bus lanes. Guidance can be mechanical, optical, or electromagnetic. Extensions of the guided technology include the Guided Light Transit and Translohr systems, although these are more often termed ‘rubber-tyred trams’ as they have limited or no mobility away from their guideways.

    Liveries

    Transit buses are normally painted to identify the operator or a route, function, or to demarcate low-cost or premium service buses. Liveries may be painted onto the vehicle, applied using adhesive vinyl technologies, or using decals. Vehicles often also carry bus advertising or part or all of their visible surfaces (as mobile billboard). Campaign buses may be decorated with key campaign messages; these can be to promote an event or initiative.

    Propulsion

    The most common power source since the 1920s has been the diesel engine. Early buses, known as trolleybuses, were powered by electricity supplied from overhead lines. Nowadays, electric buses often carry their own battery, which is sometimes recharged on stops/stations to keep the size of the battery small/lightweight. Currently, interest exists in hybrid electric busesfuel cell buseselectric buses, and ones powered by compressed natural gas or biodieselGyrobuses, which are powered by the momentum stored by a flywheel, were tried in the 1940s.

    Dimensions

    United Kingdom and European Union:Maximum Length: Single rear axle 13.5 meters (44 ft 3+12 in). Twin rear axle 15 meters (49 ft 2+12 in).Maximum Width: 2.55 meters (8 ft 4+38 in)

    United States, Canada and Mexico:Maximum Length: NoneMaximum Width: 2.6 meters (8 ft 6+38 in)

    Manufacture

    Main article: Bus manufacturing

    Early bus manufacturing grew out of carriage coach building, and later out of automobile or truck manufacturers. Early buses were merely a bus body fitted to a truck chassis. This body+chassis approach has continued with modern specialist manufacturers, although there also exist integral designs such as the Leyland National where the two are practically inseparable. Specialist builders also exist and concentrate on building buses for special uses or modifying standard buses into specialised products.

    Integral designs have the advantages that they have been well-tested for strength and stability, and also are off-the-shelf. However, two incentives cause use of the chassis+body model. First, it allows the buyer and manufacturer both to shop for the best deal for their needs, rather than having to settle on one fixed design—the buyer can choose the body and the chassis separately. Second, over the lifetime of a vehicle (in constant service and heavy traffic), it will likely get minor damage now and again, and being able easily to replace a body panel or window etc. can vastly increase its service life and save the cost and inconvenience of removing it from service.[citation needed]

    As with the rest of the automotive industry, into the 20th century, bus manufacturing increasingly became globalized, with manufacturers producing buses far from their intended market to exploit labour and material cost advantages. A typical city bus costs almost US$450,000.[21]

    Uses

    Public transport

    Main article: Public transport bus service

    PMPML CNG-led Tata Marcopolo bus in PuneIndia (2024)

    Transit buses, used on public transport bus services, have utilitarian fittings designed for efficient movement of large numbers of people, and often have multiple doors. Coaches are used for longer-distance routes. High-capacity bus rapid transit services may use the bi-articulated bus or tram-style buses such as the Wright StreetCar and the Irisbus Civis.

    Buses and coach services often operate to a predetermined published public transport timetable defining the route and the timing, but smaller vehicles may be used on more flexible demand responsive transport services.

    Tourism

    Tour bus being used in France (2015)

    Buses play a major part in the tourism industry. Tour buses around the world allow tourists to view local attractions or scenery. These are often open-top buses, but can also be regular buses or coaches.

    In local sightseeingCity Sightseeing is the largest operator of local tour buses, operating on a franchised basis all over the world. Specialist tour buses are also often owned and operated by safari parks and other theme parks or resorts. Longer-distance tours are also carried out by bus, either on a turn up and go basis or through a tour operator, and usually allow disembarkation from the bus to allow touring of sites of interest on foot. These may be day trips or longer excursions incorporating hotel stays. Tour buses often carry a tour guide, although the driver or a recorded audio commentary may also perform this function. The tour operator may be a subsidiary of a company that operates buses and coaches for other uses or an independent company that charters buses or coaches. Commuter transport operators may also use their coaches to conduct tours within the target city between the morning and evening commuter transport journey.

    Buses and coaches are also a common component of the wider package holiday industry, providing private airport transfers (in addition to general airport buses) and organised tours and day trips for holidaymakers on the package.

    Tour buses can also be hired as chartered buses by groups for sightseeing at popular holiday destinations. These private tour buses may offer specific stops, such as all the historical sights, or allow the customers to choose their own itineraries. Tour buses come with professional and informed staff and insurance, and maintain state governed safety standards. Some provide other facilities like entertainment units[clarification needed], luxurious reclining seats, large scenic windows, and even lavatories.

    Public long-distance coach networks are also often used as a low-cost method of travel by students or young people travelling the world. Some companies such as Topdeck Travel were set up specifically to use buses to drive the hippie trail or travel to places such as North Africa.

    In many tourist or travel destinations, a bus is part of the tourist attraction, such as the North American tourist trolleys, London’s AEC Routemaster heritage routes, or the customised buses of Malta, Asia, and the Americas. Another example of tourist stops is the homes of celebrities, such as tours based near Hollywood. There are several such services between 6000 and 7000 Hollywood Boulevard in Los Angeles.

    Student transport

    Main article: Student transport

    US school bus (2007)

    In some countries, particularly the US and Canada, buses used to transport schoolchildren have evolved into a specific design with specified mandatory features. American states have also adopted laws regarding motorist conduct around school buses, including large fines and possibly prison for passing a stopped school bus in the process of loading or offloading children passengers. These school buses may have school bus yellow livery and crossing guards. Other countries may mandate the use of seat belts. As a minimum, many countries require a bus carrying students to display a sign, and may also adopt yellow liveries. Student transport often uses older buses cascaded from service use, retrofitted with more seats or seatbelts. Student transport may be operated by local authorities or private contractors. Schools may also own and operate their own buses for other transport needs, such as class field trips or transport to associated sports, music, or other school events.

    Private charter

    Due to the costs involved in owning, operating, and driving buses and coaches, much bus and coach use comes from the private hire of vehicles from charter bus companies, either for a day or two or on a longer contract basis, where the charter company provides the vehicles and qualified drivers.

    An example of a private bus operating for BusWest in Perth (2018)

    Charter bus operators may be completely independent businesses, or charter hire may be a subsidiary business of a public transport operator that might maintain a separate fleet or use surplus buses, coaches, and dual-purpose coach-seated buses. Many private taxicab companies also operate larger minibus vehicles to cater for group fares. Companies, private groups, and social clubs may hire buses or coaches as a cost-effective method of transporting a group to an event or site, such as a group meeting, racing event, or organised recreational activity such as a summer camp. Schools often hire charter bus services on a regular basis for transportation of children to and from their homes. Chartered buses are also used by education institutes for transport to conventions, exhibitions, and field trips. Entertainment or event companies may also hire temporary shuttles buses for transport at events such as festivals or conferencesParty buses are used by companies in a similar manner to limousine hire, for luxury private transport to social events or as a touring experience. Sleeper buses are used by bands or other organisations that tour between entertainment venues and require mobile rest and recreation facilities. Some couples hire preserved buses for their wedding transport, instead of the traditional car. Buses are often hired for parades or processionsVictory parades are often held for triumphant sports teams, who often tour their home town or city in an open-top bus. Sports teams may also contract out their transport to a team bus, for travel to away games, to a competition or to a final event. These buses are often specially decorated in a livery matching the team colours. Private companies often contract out private shuttle bus services, for transport of their customers or patrons, such as hotels, amusement parksuniversity campuses, or private airport transfer services. This shuttle usage can be as transport between locations, or to and from parking lots. High specification luxury coaches are often chartered by companies for executive or VIP transport. Charter buses may also be used in tourism and for promotion (See Tourism and Promotion sections).

    Private ownership

    Police bus in Taipei, Taiwan (2014)

    Many organisations, including the police, not for profit, social or charitable groups with a regular need for group transport may find it practical or cost-effective to own and operate a bus for their own needs. These are often minibuses for practical, tax and driver licensing reasons, although they can also be full-size buses. Cadet or scout groups or other youth organizations may also own buses. Companies such as railroads, construction contractors, and agricultural firms may own buses to transport employees to and from remote job sites. Specific charities may exist to fund and operate bus transport, usually using specially modified mobility buses or otherwise accessible buses (See Accessibility section). Some use their contributions to buy vehicles and provide volunteer drivers.

    Airport operators make use of special airside airport buses for crew and passenger transport in the secure airside parts of an airport. Some public authorities, police forces, and military forces make use of armoured buses where there is a special need to provide increased passenger protection. The United States Secret Service acquired two in 2010 for transporting dignitaries needing special protection.[22] Police departments make use of police buses for a variety of reasons, such as prisoner transportofficer transport, temporary detention facilities, and as command and control vehicles. Some fire departments also use a converted bus as a command post[23] while those in cold climates might retain a bus as a heated shelter at fire scenes.[24] Many are drawn from retired school or service buses.

    Promotion

    Main article: Bus advertising

    Advertisement on a bus in Hong Kong (2018)

    Buses are often used for advertising, political campaigningpublic information campaignspublic relations, or promotional purposes. These may take the form of temporary charter hire of service buses, or the temporary or permanent conversion and operation of buses, usually of second-hand buses. Extreme examples include converting the bus with displays and decorations or awnings and fittings. Interiors may be fitted out for exhibition or information purposes with special equipment or audio visual devices.

    Bus advertising takes many forms, often as interior and exterior adverts and all-over advertising liveries. The practice often extends into the exclusive private hire and use of a bus to promote a brand or product, appearing at large public events, or touring busy streets. The bus is sometimes staffed by promotions personnel, giving out free gifts. Campaign buses are often specially decorated for a political campaign or other social awareness information campaign, designed to bring a specific message to different areas, or used to transport campaign personnel to local areas/meetings. Exhibition buses are often sent to public events such as fairs and festivals for purposes such as recruitment campaigns, for example by private companies or the armed forces. Complex urban planning proposals may be organised into a mobile exhibition bus for the purposes of public consultation.

    Goods transport

    Main article: Bruck (vehicle)

    A 1965 Mercedes-Benz LPO 322 Bruck in Karlskrona, Sweden (2005)

    In some sparsely populated areas, it is common to use brucks, buses with a cargo area to transport both passengers and cargo at the same time. They are especially common in the Nordic countries.

    Around the world

    See also: Category:Bus transport by country and List of buses

    Trailer bus in Havana (2006)

    Historically, the types and features of buses have developed according to local needs. Buses were fitted with technology appropriate to the local climate or passenger needs, such as air conditioning in Asia, or cycle mounts on North American buses. The bus types in use around the world where there was little mass production were often sourced secondhand from other countries, such as the Malta bus, and buses in use in Africa. Other countries such as Cuba required novel solutions to import restrictions, with the creation of the “camellos” (camel bus), a specially manufactured trailer bus.

    After the Second World War, manufacturers in Europe and the Far East, such as Mercedes-Benz buses and Mitsubishi Fuso expanded into other continents influencing the use of buses previously served by local types. Use of buses around the world has also been influenced by colonial associations or political alliances between countries. Several of the Commonwealth nations followed the British lead and sourced buses from British manufacturers, leading to a prevalence of double-decker buses. Several Eastern Bloc countries adopted trolleybus systems, and their manufacturers such as Trolza exported trolleybuses to other friendly states.[citation needed] In the 1930s, Italy designed the world’s only[dubious – discuss] triple decker bus for the busy route between Rome and Tivoli that could carry eighty-eight passengers. It was unique not only in being a triple decker but having a separate smoking compartment on the third level.[25]

    The buses to be found in countries around the world often reflect the quality of the local road network, with high-floor resilient truck-based designs prevalent in several less developed countries where buses are subject to tough operating conditions. Population density also has a major impact, where dense urbanisation such as in Japan and the far east has led to the adoption of high capacity long multi-axle buses, often double-deckers while South America and China are implementing large numbers of articulated buses for bus rapid transit schemes.

    Bus expositions

    Euro Bus Expo is a trade show, which is held biennially at the UK’s National Exhibition Centre in Birmingham. As the official show of the Confederation of Passenger Transport, the UK’s trade association for the bus, coach and light rail industry, the three-day event offers visitors from Europe and beyond the chance to see and experience the very latest vehicles and product and service innovations right across the industry.

    Busworld Kortrijk in Kortrijk, Belgium, is the leading bus trade fair in Europe. It is also held biennially.

    Use of retired buses

    Retired bus in Israel used as a tow truck (2008)

    Most public or private buses and coaches, once they have reached the end of their service with one or more operators, are sent to the wrecking yard for breaking up for scrap and spare parts. Some buses which are not economical to keep running as service buses are often converted for use other than revenue-earning transport. Much like old cars and trucks, buses often pass through a dealership where they can be bought privately or at auction.

    Bus operators often find it economical to convert retired buses to use as permanent training buses for driver training, rather than taking a regular service bus out of use. Some large operators have also converted retired buses into tow bus vehicles, to act as tow trucks. With the outsourcing of maintenance staff and facilities, the increase in company health and safety regulations, and the increasing curb weights of buses, many operators now contract their towing needs to a professional vehicle recovery company.

    A retired bus is used for an ambulance bus in Toronto (2014)

    Some buses that have reached the end of their service that are still in good condition are sent for export to other countries.

    Some retired buses have been converted to static or mobile cafés, often using historic buses as a tourist attraction. There are also catering buses: buses converted into a mobile canteen and break room. These are commonly seen at external filming locations to feed the cast and crew, and at other large events to feed staff. Another use is as an emergency vehicle, such as high-capacity ambulance bus or mobile command centre.

    Some organisations adapt and operate playbuses or learning buses to provide a playground or learning environments to children who might not have access to proper play areas. An ex-London AEC Routemaster bus has been converted to a mobile theatre and catwalk fashion show.[26]

    Some buses meet a destructive end by being entered in banger races or at demolition derbies. A larger number of old retired buses have also been converted into mobile holiday homes and campers.

    Bus preservation

    Preserved 1965 AEC Regal VI formerly operated by the Metropolitan Transport Trust in Perth

    Rather than being scrapped or converted for other uses, sometimes retired buses are saved for preservation. This can be done by individuals, volunteer preservation groups or charitable trusts, museums, or sometimes by the operators themselves as part of a heritage fleet. These buses often need to be restored to their original condition and will have their livery and other details such as internal notices and rollsigns restored to be authentic to a specific time in the bus’s history. Some buses that undergo preservation are rescued from a state of great disrepair, but others enter preservation with very little wrong with them. As with other historic vehicles, many preserved buses either in a working or static state form part of the collections of transport museums. Additionally, some buses are preserved so they can appear alongside other period vehicles in television and film. Working buses will often be exhibited at rallies and events, and they are also used as charter buses. While many preserved buses are quite old or even vintage, in some cases relatively new examples of a bus type can enter restoration. In-service examples are still in use by other operators. This often happens when a change in design or operating practice, such as the switch to one person operation or low floor technology, renders some buses redundant while still relatively new.

    Modification as railway vehicles

  • Car

    car, or an automobile, is a motor vehicle with wheels. Most definitions of cars state that they run primarily on roadsseat one to eight people, have four wheels, and mainly transport people rather than cargo.[1][2] There are around one billion cars in use worldwide.

    The French inventor Nicolas-Joseph Cugnot built the first steam-powered road vehicle in 1769, while the Swiss inventor François Isaac de Rivaz designed and constructed the first internal combustion-powered automobile in 1808. The modern car—a practical, marketable automobile for everyday use—was invented in 1886, when the German inventor Carl Benz patented his Benz Patent-Motorwagen. Commercial cars became widely available during the 20th century. The 1901 Oldsmobile Curved Dash and the 1908 Ford Model T, both American cars, are widely considered the first mass-produced[3][4] and mass-affordable[5][6][7] cars, respectively. Cars were rapidly adopted in the US, where they replaced horse-drawn carriages.[8] In Europe and other parts of the world, demand for automobiles did not increase until after World War II.[9] In the 21st century, car usage is still increasing rapidly, especially in China, India, and other newly industrialised countries.[10][11]

    Cars have controls for drivingparkingpassenger comfort, and a variety of lamps. Over the decades, additional features and controls have been added to vehicles, making them progressively more complex. These include rear-reversing camerasair conditioningnavigation systems, and in-car entertainment. Most cars in use in the early 2020s are propelled by an internal combustion engine, fueled by the combustion of fossil fuelsElectric cars, which were invented early in the history of the car, became commercially available in the 2000s and are predicted to cost less to buy than petrol-driven cars before 2025.[12][13] The transition from fossil fuel-powered cars to electric cars features prominently in most climate change mitigation scenarios,[14] such as Project Drawdown‘s 100 actionable solutions for climate change.[15]

    There are costs and benefits to car use. The costs to the individual include acquiring the vehicle, interest payments (if the car is financed), repairs and maintenance, fuel, depreciation, driving time, parking fees, taxes, and insurance.[16] The costs to society include maintaining roads, land-useroad congestionair pollutionnoise pollutionpublic health, and disposing of the vehicle at the end of its lifeTraffic collisions are the largest cause of injury-related deaths worldwide.[17] Personal benefits include on-demand transportation, mobility, independence, and convenience.[18] Societal benefits include economic benefits, such as job and wealth creation from the automotive industry, transportation provision, societal well-being from leisure and travel opportunities. People’s ability to move flexibly from place to place has far-reaching implications for the nature of societies.[19]

    Etymology

    The English word car is believed to originate from Latin carrus/carrum “wheeled vehicle” or (via Old North FrenchMiddle English carre “two-wheeled cart”, both of which in turn derive from Gaulish karros “chariot“.[20][21] It originally referred to any wheeled horse-drawn vehicle, such as a cartcarriage, or wagon.[22] The word also occurs in other Celtic languages.[23]

    “Motor car”, attested from 1895, is the usual formal term in British English.[2] “Autocar”, a variant likewise attested from 1895 and literally meaning “self-propelled car”, is now considered archaic.[24] “Horseless carriage” is attested from 1895.[25]

    “Automobile”, a classical compound derived from Ancient Greek autós (αὐτός) “self” and Latin mobilis “movable”, entered English from French and was first adopted by the Automobile Club of Great Britain in 1897.[26] It fell out of favour in Britain and is now used chiefly in North America,[27] where the abbreviated form “auto” commonly appears as an adjective in compound formations like “auto industry” and “auto mechanic“.[28][29]

    History

    Main article: History of the automobile

    This section may contain an excessive amount of intricate detail that may interest only a particular audienceSpecifically, detail should be moved to main article and summarized here. Please help by spinning off or relocating any relevant information, and removing excessive detail that may be against Wikipedia’s inclusion policy(September 2022) (Learn how and when to remove this message)
    Steam machine of Verbiest, in 1678 (Ferdinand Verbiest)
    Cugnot’s 1771 fardier à vapeur, as preserved at the Musée des Arts et Métiers, Paris
    Carl Benz, the inventor of the modern car
    The original Benz Patent-Motorwagen, the first modern car, built in 1885 and awarded the patent for the concept
    Bertha Benz, the first long distance driver
    The Flocken Elektrowagen was the first four-wheeled electric car
    Stuttgart, a cradle of the car[30][31] with Gottlieb Daimler and Wilhelm Maybach working there at the Daimler Motoren Gesellschaft and place of the modern day headquarters of Mercedes-Benz Group and Porsche

    In 1649, Hans Hautsch of Nuremberg built a clockwork-driven carriage.[32][33] The first steam-powered vehicle was designed by Ferdinand Verbiest, a Flemish member of a Jesuit mission in China around 1672. It was a 65-centimetre-long (26 in) scale-model toy for the Kangxi Emperor that was unable to carry a driver or a passenger.[18][34][35] It is not known with certainty if Verbiest’s model was successfully built or run.[35]

    Nicolas-Joseph Cugnot is widely credited with building the first full-scale, self-propelled mechanical vehicle in about 1769; he created a steam-powered tricycle.[36] He also constructed two steam tractors for the French Army, one of which is preserved in the French National Conservatory of Arts and Crafts.[36] His inventions were limited by problems with water supply and maintaining steam pressure.[36] In 1801, Richard Trevithick built and demonstrated his Puffing Devil road locomotive, believed by many to be the first demonstration of a steam-powered road vehicle. It was unable to maintain sufficient steam pressure for long periods and was of little practical use.

    The development of external combustion (steam) engines is detailed as part of the history of the car but often treated separately from the development of true cars. A variety of steam-powered road vehicles were used during the first part of the 19th century, including steam carssteam busesphaetons, and steam rollers. In the United Kingdom, sentiment against them led to the Locomotive Acts of 1865.

    In 1807, Nicéphore Niépce and his brother Claude created what was probably the world’s first internal combustion engine (which they called a Pyréolophore), but installed it in a boat on the river Saone in France.[37] Coincidentally, in 1807, the Swiss inventor François Isaac de Rivaz designed his own “de Rivaz internal combustion engine“, and used it to develop the world’s first vehicle to be powered by such an engine. The Niépces’ Pyréolophore was fuelled by a mixture of Lycopodium powder (dried spores of the Lycopodium plant), finely crushed coal dust and resin that were mixed with oil, whereas de Rivaz used a mixture of hydrogen and oxygen.[37] Neither design was successful, as was the case with others, such as Samuel BrownSamuel Morey, and Etienne Lenoir,[38] who each built vehicles (usually adapted carriages or carts) powered by internal combustion engines.[39]

    In November 1881, French inventor Gustave Trouvé demonstrated a three-wheeled car powered by electricity at the International Exposition of Electricity.[40] Although several other German engineers (including Gottlieb DaimlerWilhelm Maybach, and Siegfried Marcus) were working on cars at about the same time, the year 1886 is regarded as the birth year of the modern car—a practical, marketable automobile for everyday use—when the German Carl Benz patented his Benz Patent-Motorwagen; he is generally acknowledged as the inventor of the car.[39][41][42]

    In 1879, Benz was granted a patent for his first engine, which had been designed in 1878. Many of his other inventions made the use of the internal combustion engine feasible for powering a vehicle. His first Motorwagen was built in 1885 in Mannheim, Germany. He was awarded the patent for its invention as of his application on 29 January 1886 (under the auspices of his major company, Benz & Cie., which was founded in 1883). Benz began promotion of the vehicle on 3 July 1886, and about 25 Benz vehicles were sold between 1888 and 1893, when his first four-wheeler was introduced along with a cheaper model. They also were powered with four-stroke engines of his own design. Emile Roger of France, already producing Benz engines under license, now added the Benz car to his line of products. Because France was more open to the early cars, initially more were built and sold in France through Roger than Benz sold in Germany. In August 1888, Bertha Benz, the wife and business partner of Carl Benz, undertook the first road trip by car, to prove the road-worthiness of her husband’s invention.[43]

    In 1896, Benz designed and patented the first internal-combustion flat engine, called boxermotor. During the last years of the 19th century, Benz was the largest car company in the world with 572 units produced in 1899 and, because of its size, Benz & Cie., became a joint-stock company. The first motor car in central Europe and one of the first factory-made cars in the world, was produced by Czech company Nesselsdorfer Wagenbau (later renamed to Tatra) in 1897, the Präsident automobil.

    Daimler and Maybach founded Daimler Motoren Gesellschaft (DMG) in Cannstatt in 1890, and sold their first car in 1892 under the brand name Daimler. It was a horse-drawn stagecoach built by another manufacturer, which they retrofitted with an engine of their design. By 1895, about 30 vehicles had been built by Daimler and Maybach, either at the Daimler works or in the Hotel Hermann, where they set up shop after disputes with their backers. Benz, Maybach, and the Daimler team seem to have been unaware of each other’s early work. They never worked together; by the time of the merger of the two companies, Daimler and Maybach were no longer part of DMG. Daimler died in 1900 and later that year, Maybach designed an engine named Daimler-Mercedes that was placed in a specially ordered model built to specifications set by Emil Jellinek. This was a production of a small number of vehicles for Jellinek to race and market in his country. Two years later, in 1902, a new model DMG car was produced and the model was named Mercedes after the Maybach engine, which generated 35 hp. Maybach quit DMG shortly thereafter and opened a business of his own. Rights to the Daimler brand name were sold to other manufacturers.

    In 1890, Émile Levassor and Armand Peugeot of France began producing vehicles with Daimler engines, and so laid the foundation of the automotive industry in France. In 1891, Auguste Doriot and his Peugeot colleague Louis Rigoulot completed the longest trip by a petrol-driven vehicle when their self-designed and built Daimler powered Peugeot Type 3 completed 2,100 kilometres (1,300 mi) from Valentigney to Paris and Brest and back again. They were attached to the first Paris–Brest–Paris bicycle race, but finished six days after the winning cyclist, Charles Terront.

    The first design for an American car with a petrol internal combustion engine was made in 1877 by George Selden of Rochester, New York. Selden applied for a patent for a car in 1879, but the patent application expired because the vehicle was never built. After a delay of 16 years and a series of attachments to his application, on 5 November 1895, Selden was granted a US patent (U.S. patent 549,160) for a two-stroke car engine, which hindered, more than encouraged, development of cars in the United States. His patent was challenged by Henry Ford and others, and overturned in 1911.

    In 1893, the first running, petrol-driven American car was built and road-tested by the Duryea brothers of Springfield, Massachusetts. The first public run of the Duryea Motor Wagon took place on 21 September 1893, on Taylor Street in Metro Center Springfield.[44][45] Studebaker, subsidiary of a long-established wagon and coach manufacturer, started to build cars in 1897[46]: 66  and commenced sales of electric vehicles in 1902 and petrol vehicles in 1904.[47]

    In Britain, there had been several attempts to build steam cars with varying degrees of success, with Thomas Rickett even attempting a production run in 1860.[48] Santler from Malvern is recognised by the Veteran Car Club of Great Britain as having made the first petrol-driven car in the country in 1894,[49] followed by Frederick William Lanchester in 1895, but these were both one-offs.[49] The first production vehicles in Great Britain came from the Daimler Company, a company founded by Harry J. Lawson in 1896, after purchasing the right to use the name of the engines. Lawson’s company made its first car in 1897, and they bore the name Daimler.[49]

    In 1892, German engineer Rudolf Diesel was granted a patent for a “New Rational Combustion Engine”. In 1897, he built the first diesel engine.[39] Steam-, electric-, and petrol-driven vehicles competed for a few decades, with petrol internal combustion engines achieving dominance in the 1910s. Although various pistonless rotary engine designs have attempted to compete with the conventional piston and crankshaft design, only Mazda‘s version of the Wankel engine has had more than very limited success. All in all, it is estimated that over 100,000 patents created the modern automobile and motorcycle.[50]

    Mass production

    See also: Automotive industry

    Ransom E. Olds founded Olds Motor Vehicle Company (Oldsmobile) in 1897.
    Ford Motor Company automobile assembly line in the 1920s
    The Toyota Corolla is the best-selling car of all-time.

    Large-scale, production-line manufacturing of affordable cars was started by Ransom Olds in 1901 at his Oldsmobile factory in Lansing, Michigan, and based upon stationary assembly line techniques pioneered by Marc Isambard Brunel at the Portsmouth Block Mills, England, in 1802. The assembly line style of mass production and interchangeable parts had been pioneered in the US by Thomas Blanchard in 1821, at the Springfield Armory in Springfield, Massachusetts.[51] This concept was greatly expanded by Henry Ford, beginning in 1913 with the world’s first moving assembly line for cars at the Highland Park Ford Plant.

    As a result, Ford’s cars came off the line in 15-minute intervals, much faster than previous methods, increasing productivity eightfold, while using less manpower (from 12.5 manhours to 1 hour 33 minutes).[52] It was so successful, paint became a bottleneck. Only Japan black would dry fast enough, forcing the company to drop the variety of colours available before 1913, until fast-drying Duco lacquer was developed in 1926. This is the source of Ford’s apocryphal remark, “any color as long as it’s black”.[52] In 1914, an assembly line worker could buy a Model T with four months’ pay.[52]

    Ford’s complex safety procedures—especially assigning each worker to a specific location instead of allowing them to roam about—dramatically reduced the rate of injury.[53] The combination of high wages and high efficiency is called “Fordism” and was copied by most major industries. The efficiency gains from the assembly line also coincided with the economic rise of the US. The assembly line forced workers to work at a certain pace with very repetitive motions which led to more output per worker while other countries were using less productive methods.

    In the automotive industry, its success was dominating, and quickly spread worldwide seeing the founding of Ford France and Ford Britain in 1911, Ford Denmark 1923, Ford Germany 1925; in 1921, Citroën was the first native European manufacturer to adopt the production method. Soon, companies had to have assembly lines, or risk going bankrupt; by 1930, 250 companies which did not, had disappeared.[52]

    Development of automotive technology was rapid, due in part to the hundreds of small manufacturers competing to gain the world’s attention. Key developments included electric ignition and the electric self-starter (both by Charles Kettering, for the Cadillac Motor Company in 1910–1911), independent suspension, and four-wheel brakes.

    Since the 1920s, nearly all cars have been mass-produced to meet market needs, so marketing plans often have heavily influenced car design. It was Alfred P. Sloan who established the idea of different makes of cars produced by one company, called the General Motors Companion Make Program, so that buyers could “move up” as their fortunes improved.

    Reflecting the rapid pace of change, makes shared parts with one another so larger production volume resulted in lower costs for each price range. For example, in the 1930s, LaSalles, sold by Cadillac, used cheaper mechanical parts made by Oldsmobile; in the 1950s, Chevrolet shared bonnet, doors, roof, and windows with Pontiac; by the 1990s, corporate powertrains and shared platforms (with interchangeable brakes, suspension, and other parts) were common. Even so, only major makers could afford high costs, and even companies with decades of production, such as AppersonColeDorrisHaynes, or Premier, could not manage: of some two hundred American car makers in existence in 1920, only 43 survived in 1930, and with the Great Depression, by 1940, only 17 of those were left.[52]

    In Europe, much the same would happen. Morris set up its production line at Cowley in 1924, and soon outsold Ford, while beginning in 1923 to follow Ford’s practice of vertical integration, buying Hotchkiss’ British subsidiary (engines), Wrigley (gearboxes), and Osberton (radiators), for instance, as well as competitors, such as Wolseley: in 1925, Morris had 41 per cent of total British car production. Most British small-car assemblers, from Abbey to Xtra, had gone under. Citroën did the same in France, coming to cars in 1919; between them and other cheap cars in reply such as Renault‘s 10CV and Peugeot‘s 5CV, they produced 550,000 cars in 1925, and MorsHurtu, and others could not compete.[52] Germany’s first mass-manufactured car, the Opel 4PS Laubfrosch (Tree Frog), came off the line at Rüsselsheim in 1924, soon making Opel the top car builder in Germany, with 37.5 per cent of the market.[52]

    In Japan, car production was very limited before World War II. Only a handful of companies were producing vehicles in limited numbers, and these were small, three-wheeled for commercial uses, like Daihatsu, or were the result of partnering with European companies, like Isuzu building the Wolseley A-9 in 1922. Mitsubishi was also partnered with Fiat and built the Mitsubishi Model A based on a Fiat vehicle. ToyotaNissanSuzukiMazda, and Honda began as companies producing non-automotive products before the war, switching to car production during the 1950s. Kiichiro Toyoda’s decision to take Toyoda Loom Works into automobile manufacturing would create what would eventually become Toyota Motor Corporation, the largest automobile manufacturer in the world. Subaru, meanwhile, was formed from a conglomerate of six companies who banded together as Fuji Heavy Industries, as a result of having been broken up under keiretsu legislation.

    Components and design

    Propulsion and fuels

    See also: Alternative fuel vehicle

    2011 Nissan Leaf electric car
    The weight of the low battery stabilises the car.[54] This is a dual-motor, four-wheel-drive layout but many cars only have one motor.

    Fossil fuels

    Most cars in use in the early 2020s run on petrol burnt in an internal combustion engine (ICE). Some cities ban older more polluting petrol-driven cars and some countries plan to ban sales in future. However, some environmental groups say this phase-out of fossil fuel vehicles must be brought forwards to limit climate change. Production of petrol-fuelled cars peaked in 2017.[55][56]

    Other hydrocarbon fossil fuels also burnt by deflagration (rather than detonation) in ICE cars include dieselautogas, and CNG. Removal of fossil fuel subsidies,[57][58] concerns about oil dependence, tightening environmental laws and restrictions on greenhouse gas emissions are propelling work on alternative power systems for cars. This includes hybrid vehiclesplug-in electric vehicles and hydrogen vehicles. Out of all cars sold in 2021, nine per cent were electric, and by the end of that year there were more than 16 million electric cars on the world’s roads.[59] Despite rapid growth, less than two per cent of cars on the world’s roads were fully electric and plug-in hybrid cars by the end of 2021.[59] Cars for racing or speed records have sometimes employed jet or rocket engines, but these are impractical for common use. Oil consumption has increased rapidly in the 20th and 21st centuries because there are more cars; the 1980s oil glut even fuelled the sales of low-economy vehicles in OECD countries. The BRIC countries are adding to this consumption.

    Batteries

    Main article: Electric vehicle battery

    See also: Electric car § Batteries, and Automotive battery

    In almost all hybrid (even mild hybrid) and pure electric cars regenerative braking recovers and returns to a battery some energy which would otherwise be wasted by friction brakes getting hot.[60] Although all cars must have friction brakes (front disc brakes and either disc or drum rear brakes[61]) for emergency stops, regenerative braking improves efficiency, particularly in city driving.[62]

    User interface

    Main article: Car controls

    In the Ford Model T the left-side hand lever sets the rear wheel parking brakes and puts the transmission in neutral. The lever to the right controls the throttle. The lever on the left of the steering column is for ignition timing. The left foot pedal changes the two forward gears while the centre pedal controls reverse. The right pedal is the brake.

    Cars are equipped with controls used for driving, passenger comfort, and safety, normally operated by a combination of the use of feet and hands, and occasionally by voice on 21st-century cars. These controls include a steering wheel, pedals for operating the brakes and controlling the car’s speed (and, in a manual transmission car, a clutch pedal), a shift lever or stick for changing gears, and a number of buttons and dials for turning on lights, ventilation, and other functions. Modern cars’ controls are now standardised, such as the location for the accelerator and brake, but this was not always the case. Controls are evolving in response to new technologies, for example, the electric car and the integration of mobile communications.

    Some of the original controls are no longer required. For example, all cars once had controls for the choke valve, clutch, ignition timing, and a crank instead of an electric starter. However, new controls have also been added to vehicles, making them more complex. These include air conditioningnavigation systems, and in-car entertainment. Another trend is the replacement of physical knobs and switches by secondary controls with touchscreen controls such as BMW‘s iDrive and Ford‘s MyFord Touch. Another change is that while early cars’ pedals were physically linked to the brake mechanism and throttle, in the early 2020s, cars have increasingly replaced these physical linkages with electronic controls.

    Electronics and interior

    Panel for fuses and circuit breakers

    Cars are typically equipped with interior lighting which can be toggled manually or be set to light up automatically with doors open, an entertainment system which originated from car radios, sideways windows which can be lowered or raised electrically (manually on earlier cars), and one or multiple auxiliary power outlets for supplying portable appliances such as mobile phones, portable fridges, power inverters, and electrical air pumps from the on-board electrical system.[63][64][a] More costly upper-class and luxury cars are equipped with features earlier such as massage seats and collision avoidance systems.[65][66]

    Dedicated automotive fuses and circuit breakers prevent damage from electrical overload.

    Lighting

    Main article: Automotive lighting

    Audi A4 daytime running lights

    Cars are typically fitted with multiple types of lights. These include headlights, which are used to illuminate the way ahead and make the car visible to other users, so that the vehicle can be used at night; in some jurisdictions, daytime running lights; red brake lights to indicate when the brakes are applied; amber turn signal lights to indicate the turn intentions of the driver; white-coloured reverse lights to illuminate the area behind the car (and indicate that the driver will be or is reversing); and on some vehicles, additional lights (e.g., side marker lights) to increase the visibility of the car. Interior lights on the ceiling of the car are usually fitted for the driver and passengers. Some vehicles also have a boot light and, more rarely, an engine compartment light.

    Weight and size

    Chevrolet Suburban extended-length SUV weighs 3,300 kilograms (7,200 lb) (gross weight).[67]

    During the late 20th and early 21st century, cars increased in weight due to batteries,[68] modern steel safety cages, anti-lock brakes, airbags, and “more-powerful—if more efficient—engines”[69] and, as of 2019, typically weigh between 1 and 3 tonnes (1.1 and 3.3 short tons; 0.98 and 2.95 long tons).[70] Heavier cars are safer for the driver from a crash perspective, but more dangerous for other vehicles and road users.[69] The weight of a car influences fuel consumption and performance, with more weight resulting in increased fuel consumption and decreased performance. The Wuling Hongguang Mini EV, a typical city car, weighs about 700 kilograms (1,500 lb). Heavier cars include SUVs and extended-length SUVs like the Suburban. Cars have also become wider.[71]

    Some places tax heavier cars more:[72] as well as improving pedestrian safety this can encourage manufacturers to use materials such as recycled aluminium instead of steel.[73] It has been suggested that one benefit of subsidising charging infrastructure is that cars can use lighter batteries.[74]

    Seating and body style

    See also: Car body styleCar classificationTruck classification, and Vehicle size class

    Most cars are designed to carry multiple occupants, often with four or five seats. Cars with five seats typically seat two passengers in the front and three in the rear. Full-size cars and large sport utility vehicles can often carry six, seven, or more occupants depending on the arrangement of the seats. On the other hand, sports cars are most often designed with only two seats. Utility vehicles like pickup trucks, combine seating with extra cargo or utility functionality. The differing needs for passenger capacity and their luggage or cargo space has resulted in the availability of a large variety of body styles to meet individual consumer requirements that include, among others, the sedan/saloonhatchbackstation wagon/estatecoupe, and minivan.

    Safety

    Main articles: Car safetyTraffic collisionLow speed vehicle, and Epidemiology of motor vehicle collisions

    Result of a serious car collision

    Traffic collisions are the largest cause of injury-related deaths worldwide.[17] Mary Ward became one of the first documented car fatalities in 1869 in Parsonstown, Ireland,[75] and Henry Bliss one of the US’s first pedestrian car casualties in 1899 in New York City.[76] There are now standard tests for safety in new cars, such as the Euro and US NCAP tests,[77] and insurance-industry-backed tests by the Insurance Institute for Highway Safety (IIHS).[78] However, not all such tests consider the safety of people outside the car, such as drivers of other cars, pedestrians and cyclists.[79]

    Costs and benefits

    Main articles: Economics of car usageCar costs, and Effects of the car on societies

    Road congestion is an issue in many major cities (pictured is Chang’an Avenue in Beijing).[80]

    The costs of car usage, which may include the cost of: acquiring the vehicle, repairs and auto maintenance, fuel, depreciation, driving time, parking fees, taxes, and insurance,[16] are weighed against the cost of the alternatives, and the value of the benefits—perceived and real—of vehicle usage. The benefits may include on-demand transportation, mobility, independence, and convenience,[18] and emergency power.[81] During the 1920s, cars had another benefit: “[c]ouples finally had a way to head off on unchaperoned dates, plus they had a private space to snuggle up close at the end of the night.”[82]

    Similarly the costs to society of car use may include; maintaining roadsland useair pollutionnoise pollutionroad congestionpublic health, health care, and of disposing of the vehicle at the end of its life; and can be balanced against the value of the benefits to society that car use generates. Societal benefits may include: economy benefits, such as job and wealth creation, of car production and maintenance, transportation provision, society wellbeing derived from leisure and travel opportunities, and revenue generation from the tax opportunities. The ability of humans to move flexibly from place to place has far-reaching implications for the nature of societies.[19]

    Environmental effects

    See also: Exhaust gasWaste tiresEnvironmental effects of transportExternalities of automobilesNoise pollutionEnvironmental aspects of the electric car, and Vehicle recycling

    Trucks’ share of US vehicles produced, has tripled since 1975. Though vehicle fuel efficiency has increased within each category, the overall trend toward less efficient types of vehicles has offset some of the benefits of greater fuel economy and reductions in pollution and carbon dioxide emissions.[83] Without the shift towards SUVs, energy use per unit distance could have fallen 30% more than it did from 2010 to 2022.[84]
    close-up of 2 exhaust pipes with whitish smoke
    Car exhaust gas is one type of pollution

    Car production and use has a large number of environmental impacts: it causes local air pollution plastic pollution and contributes to greenhouse gas emissions and climate change.[85] Cars and vans caused 10% of energy-related carbon dioxide emissions in 2022.[86] As of 2023, electric cars produce about half the emissions over their lifetime as diesel and petrol cars. This is set to improve as countries produce more of their electricity from low-carbon sources.[87] Cars consume almost a quarter of world oil production as of 2019.[55] Cities planned around cars are often less dense, which leads to further emissions, as they are less walkable for instance.[85] A growing demand for large SUVs is driving up emissions from cars.[88]

    Cars are a major cause of air pollution,[89] which stems from exhaust gas in diesel and petrol cars and from dust from brakes, tyres, and road wear. Electric cars do not produce tailpipe emissions, but are generally heavier and therefore produce slightly more particulate matter.[90] Heavy metals and microplastics (from tyres) are also released into the environment, during production, use and at the end of life. Mining related to car manufacturing and oil spills both cause water pollution.[85]

    Animals and plants are often negatively affected by cars via habitat destruction and fragmentation from the road network and pollution. Animals are also killed every year on roads by cars, referred to as roadkill.[85] More recent road developments are including significant environmental mitigation in their designs, such as green bridges (designed to allow wildlife crossings) and creating wildlife corridors.

    Governments use fiscal policies, such as road tax, to discourage the purchase and use of more polluting cars;[91] Vehicle emission standards ban the sale of new highly pollution cars.[92] Many countries plan to stop selling fossil cars altogether between 2025 and 2050.[93] Various cities have implemented low-emission zones, banning old fossil fuel and Amsterdam is planning to ban fossil fuel cars completely.[94][95] Some cities make it easier for people to choose other forms of transport, such as cycling.[94] Many Chinese cities limit licensing of fossil fuel cars,[96]

    Social issues

    Mass production of personal motor vehicles in the United States and other developed countries with extensive territories such as Australia, Argentina, and France vastly increased individual and group mobility and greatly increased and expanded economic development in urban, suburban, exurban and rural areas.[citation needed] Growth in the popularity of cars and commuting has led to traffic congestion.[97] MoscowIstanbulBogotáMexico City and São Paulo were the world’s most congested cities in 2018 according to INRIX, a data analytics company.[98]

    Access to cars

    In the United States, the transport divide and car dependency resulting from domination of car-based transport systems presents barriers to employment in low-income neighbourhoods,[99] with many low-income individuals and families forced to run cars they cannot afford in order to maintain their income.[100] Dependency on automobiles by African Americans may result in exposure to the hazards of driving while black and other types of racial discrimination related to buying, financing and insuring them.[101]

    Health impact

    Further information: Motor vehicle pollution and pregnancy

    Air pollution from cars increases the risk of lung cancer and heart disease. It can also harm pregnancies: more children are born too early or with lower birth weight.[85] Children are extra vulnerable to air pollution, as their bodies are still developing and air pollution in children is linked to the development of asthmachildhood cancer, and neurocognitive issues such as autism.[102][85] The growth in popularity of the car allowed cities to sprawl, therefore encouraging more travel by car, resulting in inactivity and obesity, which in turn can lead to increased risk of a variety of diseases.[103] When places are designed around cars, children have fewer opportunities to go places by themselves, and lose opportunities to become more independent.[104][85]

    Emerging car technologies

    Although intensive development of conventional battery electric vehicles is continuing into the 2020s,[105] other car propulsion technologies that are under development include wireless charging,[106] hydrogen cars,[107][108] and hydrogen/electric hybrids.[109] Research into alternative forms of power includes using ammonia instead of hydrogen in fuel cells.[110]

    New materials which may replace steel car bodies include aluminium,[111] fiberglasscarbon fiberbiocomposites, and carbon nanotubes.[112] Telematics technology is allowing more and more people to share cars, on a pay-as-you-go basis, through car share and carpool schemes. Communication is also evolving due to connected car systems.[113] Open-source cars are not widespread.[114]

    Autonomous car

    Main article: Autonomous car

    A robotic Volkswagen Passat shown at Stanford University is a driverless car.

    Fully autonomous vehicles, also known as driverless cars, already exist as robotaxis[115][116] but have a long way to go before they are in general use.[117]

    Car sharing

    Car-share arrangements and carpooling are also increasingly popular, in the US and Europe.[118] For example, in the US, some car-sharing services have experienced double-digit growth in revenue and membership growth between 2006 and 2007. Services like car sharing offer residents to “share” a vehicle rather than own a car in already congested neighbourhoods.[119]

    Industry

    Main article: Automotive industry

    This section needs expansion. You can help by making an edit request(March 2019)
    A car being assembled in a factory

    The automotive industry designs, develops, manufactures, markets, and sells the world’s motor vehicles, more than three-quarters of which are cars. In 2020, there were 56 million cars manufactured worldwide,[120] down from 67 million the previous year.[121] The automotive industry in China produces by far the most (20 million in 2020), followed by Japan (seven million), then Germany, South Korea and India.[122] The largest market is China, followed by the US.

    Around the world, there are about a billion cars on the road;[123] they burn over a trillion litres (0.26×1012 US gal; 0.22×1012 imp gal) of petrol and diesel fuel yearly, consuming about 50 exajoules (14,000 TWh) of energy.[124] The numbers of cars are increasing rapidly in China and India.[125] In the opinion of some, urban transport systems based around the car have proved unsustainable, consuming excessive energy, affecting the health of populations, and delivering a declining level of service despite increasing investment. Many of these negative effects fall disproportionately on those social groups who are also least likely to own and drive cars.[126][127] The sustainable transport movement focuses on solutions to these problems. The car industry is also facing increasing competition from the public transport sector, as some people re-evaluate their private vehicle usage. In July 2021, the European Commission introduced the “Fit for 55” legislation package, outlining crucial directives for the automotive sector’s future.[128][129] According to this package, by 2035, all newly sold cars in the European market must be Zero-emissions vehicles.[130][131][132]

    Alternatives

    Main article: Alternatives to car use

    The Vélib’ in Paris, France, is the largest bikesharing system outside China.

    Established alternatives for some aspects of car use include public transport such as busses, trolleybusses, trains, subwaystramwayslight rail, cycling, and walkingBicycle sharing systems have been established in China and many European cities, including Copenhagen and Amsterdam. Similar programmes have been developed in large US cities.[133][134] Additional individual modes of transport, such as personal rapid transit could serve as an alternative to cars if they prove to be socially accepted.[135] A study which checked the costs and the benefits of introducing Low Traffic Neighbourhood in London found the benefits overpass the costs approximately by 100 times in the first 20 years and the difference is growing over time.